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Abstract

A serious problem with current SSDs is its low

reliability due to their primary component, flash-

memory, that has high error rate and limited erase

count. Adopting RAID architecture is a reasonable

way to increase reliability of SSDs. In this paper,

we propose Dynamic and Variable Size Striping-

RAID (DVS-RAID) that dynamically constructs a

variable size stripe based on arrival order of write

requests such that write requests are sequentially

written to a stripe improving the performance and

lifetime of SSDs. To increase the reliability of small

writes without making use of non-volatile RAM,

DVS-RAID employs variable size striping, which

constructs a new stripe with data written to portions

of a full stripe and writes a parity for that partial

stripe. We implement DVS-RAID in the DiskSim

SSD extension, and experimental results based on

trace-driven simulations show that DVS-RAID out-

performs the conventional RAID-5 scheme in terms

of performance and lifetime of SSDs.

1 Introduction

This paper considers using RAID to increase the re-

liability of flash memory based SSDs. New devel-

opments in flash memory, in particular, multi-level

cell (MLC) and triple-level cell (TLC) flash mem-

ory, have brought about higher density. However,

with it the program/erase (P/E) cycles for these tech-

nologies have come down rapidly, from 100,000

for single-level cell (SLC) flash memory down to

10,000 and 2,500 P/E cycles for MLC and TLC

flash memory, respectively [6]. This in turn exacer-

bates the issue of reliability in flash based products

as the bit error rate (BER) is strongly correlated to

the wear down of P/E cycles [4, 6].

In order to improve reliability, conventional SSDs

record error correction code (ECC) in out-of-band

(OOB) flash memory. However, ECC has some in-

trinsic limitations. First, its detection and correction

level is highly affected by the size of the ECC [3].

Larger ECCs allows higher level of data recovery

but requires larger OOB area, where size is quite

limited. If the number of bits in error is beyond

the ECC capacity, then there is nothing that can be

done, and this is becoming a reality [9]. In similar

context, page-, block-, or chip-level errors cannot

be corrected. Hence, RAID based corrective mea-

sures have been proposed [5, 7, 8]. However, these

approaches each have their own limitations as we

discuss later.

In this paper, we propose a technique for pro-

viding RAID-5 level or better reliability for flash

based SSDs by constructing RAID at the chip level.

The technique, which we call Dynamic and Variable

Size Striping-RAID (DVS-RAID), does away with

the inherent small write problem associated with

conventional RAID-5 by dynamically constructing

a variable size stripe based on arrival order of write

requests. Though the idea of dynamic striping has
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been known for disk-based RAID system, we eval-

uate how much performance enhancement can be

achieved and how much overhead is required for

applying RAID configuration to SSDs. Further-

more, DVS-RAID improves the reliability of SSDs

through variable size striping without any hard-

ware support. While conventional RAID methods

adapted to flash memory must write stripes in whole

to provide RAID-5 reliability, the variable size strip-

ing scheme allows for small writes to construct a

partial stripe and to write the parity for this partial

stripe. Consequently, there can be multiple partial

stripes in a full stripe. This is especially important

as a physical stripe in today’s SSDs may be com-

posed of a large number of chips and thus a substan-

tial number of write requests may not be able to fill

the whole stripe by itself or within a safe time pe-

riod. Through experiments with the DiskSim SSD

extension, we explore the benefits and overhead of

DVS-RAID compared to the conventional RAID-5

scheme.

The rest of the paper is organized as follows. In

the next section, we discuss how RAID is supported

with SSDs. We also briefly discuss works related to

this study. In Section 3, we describe the proposed

DVS-RAID in detail. Then, in Section 4, we evalu-

ate DVS-RAID via trace-driven simulations using

the DiskSim SSD extension [10]. We show that

DVS-RAID improves performance of SSDs by 24%

and its life-span by 28% for realistic workloads

compared to the conventional RAID-5 approach.

Finally, we conclude with Section 5.

2 SSD and RAID

Let us start by reviewing the components that com-

prise an SSD with RAID support using Fig. 1(a),

which shows the internal structure of an SSD and

how the data would be dispersed among the chips

within the SSD. In a typical SSD, there are NC flash

memory chips, and in each chip there are multi-

ple blocks each associated with a Physical Block

Number (PBN). In each block, there are multiple

pages, each associated with a Physical Page Number

(PPN). A stripe consists of NC pages, each of which

belongs to each individual chip. Typical SSDs to-

day employ a large NC value typically 10∼16 chips,

and more in some SSDs, though in Fig. 1 we use

Figure 1: (a) Internal structure of conventional

RAID-5 supporting SSDs, with initial data alloca-

tion and (b) how data and parity would be allocated

as updates occur.

an example with only 5 chips. Dx and Px, in the

figure, denote user data and parity, respectively. We

emphasize that the focus of this study is in present-

ing a management scheme used at the SSD & RAID

controller component in Fig. 1(a).

RAID, in current SSDs, are supported as fol-

lows [5, 8]. Take the initial situation in Fig. 1(a)

where D0∼D7 are user data and there is a parity

per stripe. Stripe 0 consists of pages D0∼D3 and

P0, while Stripe 1 consists of pages D4∼D7 and

P1. The Stripe map table in the controller holds

information regarding each stripe where the num-

ber pairs represent the PBN and the PPN within the

chip.

Assume data pages D1 through D4 are updated.

Note that unlike disk-based RAID-5 where each old

strip would be overwritten, this cannot happen with

flash memory based SSDs. Instead of overwriting,

new data must be written to a new location, and to

employ every chip as a RAID component, the new

data must be written on the same chip of the orig-

inal data. Then using either read-modify-write (as

for Stripe 1) or reconstruct-write (as for Stripe 0),

existing data must be read to calculate the new par-

ity, so that the new data and parity can be written to

the chips. The Stripe map table is then updated to

reflect the changes as shown in Fig. 1(b).

There are limitations to this approach. First,

whether read-modify-write or reconstruct-write is

employed, reading of existing data must precede

new parity calculations. This is also true for tra-

ditional disk-based RAID-5 systems. Second, once
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Figure 2: Write sequence for DVS-RAID as (a) data

pages D1-D4 are modified and as (b) new partial

stripe data D8 and D9 are written.

a data and parity page is allocated to a particular

chip, this relation is fixed. Hence, if a particular

page is written with higher frequency, then that par-

ticular chip will be written to more frequently. Also,

the chip in which the parity page resides is more

prone to wear out as it must be written to more

frequently. These fixed relations eventually lead to

higher cleaning costs and decreased lifetime of the

SSD. Third, when non-existing data is written, the

data cannot be written until the stripe becomes full,

leaving open a window of vulnerability. For exam-

ple, if new data D8 and D9 arrive, in our example

above, a parity page cannot be calculated for these

pages that form a partial stripe, and thus these pages

cannot be written until a full stripe is formed, that

is, another two new pages arrive.

Methods such as Partial Parity Cache (PPC) [5],

Flash-aware Redundancy Array (FRA) [8] and the

Lifespan-aware scheme [7] have been proposed to

resolve these limitations. To reduce the cost of par-

ity update of RAID-5, FRA avoids writing parities

at time critical points postponing them to idle peri-

ods by making use of dual mapping tables. In so

doing, FRA reduces write response time compared

to RAID-5 [8]. However, failures at partial stripe

write points cannot be recovered as parity calcula-

tions are delayed until a full stripe is written. PPC

is an architecture that is similar to RAID-5, but re-

solves partial writes by generating partial parity for

partial stripes. However, this is done by making

use of non-volatile RAM (NVRAM), which is an

added hardware component. The Lifespan-aware

scheme is another proposal to enhance the reliability

of SSDs through RAID support. As flash memory

BER changes with more wear, the number of par-

ity pages is adjusted to accommodate the error rate

of the current SSD, increasing with longer usage.

This scheme also requires that the parity be cached

in NVRAM [7]. The fact that parity must be stored

in costly NVRAM is a significant drawback of the

last two schemes.

3 Dynamic and Variable Size Striping-
RAID

In this section, we present a technique, which we

call Dynamic and Variable Size Striping-RAID, that

supports RAID-5 reliability for all data sizes, that is,

full or partial stripes. Our scheme does not require

any additional hardware component.

3.1 DVS-RAID and Parity Overhead
Dynamic and Variable Size Striping-RAID (DVS-

RAID), the scheme that we propose, has two fea-

tures. First, every strip that comprises a stripe al-

ways has the same PPN number. A stripe is con-

structed based on arrival order of write request re-

gardless of LBN. Second, DVS-RAID employs a

variable size striping scheme that can construct a

partial stripe with data of a small write request,

which we define to be a write request smaller than

the full stripe size minus 1 (the minus 1 for the par-

ity). As a result, multiple partial stripes can exist in

a full stripe.

Let us go through an example starting from the

same Fig. 1(a) with valid user data, D0-D7. With

DVS-RAID, all pages of PPN 0 and 1 comprise

Stripe 0 and 1, respectively. As D1∼D4 are mod-

ified, the controller simply calculates the new parity

for these pages, writes them on the pages with PPN

2 along with the parity value as shown in Fig. 2(a).

After writing, the controller simply marks the old

pages as obsolete. There is no need to read the old

pages.

Furthermore, all chips are written to evenly even

if particular pages are more frequently written to,

including the parity page. In case of RAID-5, an

entry of the Stripe map table consists of a PBN and

PPN pair. Note that the chip number is not needed

as the LBN of the data designates the chip number.

However, for DVS-RAID, since a data page may

be allocated to any chip, the Stripe map table must

comprise the Chip ID, PBN, and PPN.

Now consider the case when only part of the

stripe is written. Continuing with the previous ex-
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(a) Before cleaning (b) After cleaning

Figure 3: SSD internals with DVS-RAID (a) before cleaning and (b) after cleaning.

ample, assume again that D8 and D9 are being

newly written. Then DVS-RAID does not wait for

data of the entire stripe to arrive, but constructs a

variable size stripe with the written data by generat-

ing a partial parity. Then, the data and parity of the

stripe are written right away gaining RAID-5 relia-

bility. In our example, shown in Fig. 2(b), D8 and

D9, respectively, is allocated to PPN 3 of Chips 0

and 2, while the parity for these data, denoted PSP

in the figure, is written to Chip 3. Note that we skip

Chip 1 as for this particular PPN, Chip 1 is the posi-

tion of the full stripe parity. In our scheme, the page

in this position is either used to store the full stripe

parity, as it normally should, or it is used to store

the last partial parity in that PPN. This will allow

for the parities to be evenly distributed as much as

possible. As more data arrive, say D10, the last par-

ity is calculated with it and written to the skipped

Chip 1. This method does waste some space for

storing multiple parities for partial stripes, but these

are reclaimed during garbage collection, hence there

is no permanent loss of capacity. However, as mul-

tiple parities take up space, garbage collection may

have to be performed more frequently, increasing

the number of write requests. We will later quanti-

tatively evaluate how many extra writes are incurred

by employing variable size striping.

This variable size striping scheme increases reli-

ability in two aspects. First, it protects data of small

write requests immediately after they and their asso-

ciated parities are written. In contrast, the RAID-5

scheme can not protect its data until the data portion

of the full stripe is filled, its parity calculated, and

the full stripe is written. Second, two or more er-

rors can be recovered if they fall into different par-

tial stripes that are protected by different parities.

Table 1: Parameter of SSD simulator
Parameter Value Parameter Value

Page size 4KB Page write 200us

Block size 256KB Block erase 1.5ms

Page read 25us Page Xfer latency 100us

Table 2: Characteristics of I/O workload
Workload Avg. Wrt Req. Size Aggr. Wrt Req

Sequential 9.1KB 18GB

Random 12.6KB 18GB

Postmark 1.6MB 11.1GB

Financial 10.9KB 28.8GB

This results in DVS-RAID providing stronger relia-

bility than RAID-5.

3.2 Cleaning operation of DVS-RAID

Since flash memory suffers from out-of-place-

update, updated data must be written to free pages.

If there is no free space to write to, a cleaning oper-

ation is invoked to make free space. Fig. 3 depicts

the situation within the SSD before and after clean-

ing in DVS-RAID. To describe the cleaning pro-

cess, we define a notion of a Dynamic Stripe Group

(DSG). A DSG is composed of physical blocks that

comprise a stripe, which means that these physical

blocks are all of the same block number. For exam-

ple, as shown in Fig. 3, block 0 of all chips comprise

DSG0, block 1 of all chips comprise DSG1, and so

on.

The cleaning process of DVS-RAID proceeds as

follows. First, a DSG with the smallest number of

valid pages is chosen as the victim DSG. In our ex-

ample in Fig. 3, DSG1 is selected. Note that for

cleaning purposes, at least one empty DSG must al-

ways be available. In our example, this is DSG15.
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Figure 4: Performance results
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Figure 5: Analysis of parity overhead (PR, PPW, PW CL, and PW WR denotes page reads, partial stripe

parity writes, parity writes during cleaning, and parity writes for write requests, respectively.)

The next step is to copy the valid pages from the se-

lected DSG to the empty DSG. Note here that only

the data pages are copied, and that the parity pages

are not. The old parity pages are simply discarded,

and new parity pages are calculated with only the

valid pages. In our example, there are 5 valid pages,

and among them D32, D1’, D2’, and D3’ form a

stripe and with them, a new parity page, P60, is cal-

culated and stored in Chip 4. The last remaining

valid page, D31, forms a partial stripe and a PSP

is calculated for this page. D31 and its correspond-

ing PSP is stored in Chips 0 and 1, respectively as

shown in Fig. 3(b).

4 Evaluation
For evaluation, we implemented the DVS-RAID

scheme by modifying the Disksim SSD extension

[10]. Table 1 presents the simulation parameters

where 5% of the SSD is utilized as over-provisioned

space for cleaning operations. We assume that

8 flash memory chips are configured for RAID

(i.e., 8-channels), implying that a full stripe con-

sists of 8 pages (32KB). We compare DVS-RAID

with RAID-0 and RAID-5 in terms of I/O response

time, cleaning time and parity management over-

head. RAID-0, which is typically used in con-

ventional SSDs, does not maintain parity and only

stripes data to exploit the parallelism within SSDs.

For comparison, we also implemented DS-RAID

(Dynamic Striping) that employs dynamic striping

but not variable size striping. Four workloads are

used as summarized in Table 2. The first two work-

loads are synthetic ones that access data sequen-

tially one by one or randomly with uniform distribu-

tion. The Postmark workload is a file system bench-

mark with significant sequential I/Os and an average

write request size of 1.6MB [2]. Finally, the Finan-

cial workload is a random write intensive workload

from OLTP applications running at financial institu-

tions [1].

Fig. 4(a) shows the average response time results.

The x-axis denotes all the evaluated schemes per

workload, while the y-axis represents the average

response time. For DVS-RAID, a new partial stripe

is constructed with data of the small write request

when the inter-arrival distance between two requests

exceeds 50 milliseconds. As observed from the fig-

ure, RAID-0, which does not handle parity, offers

the best performance. For the sequential workload,

RAID-5 does not show much performance degrada-

tion as most writes are handled through full strip-

ing. However, it performs poorly for the random

workload due to parity management overhead for

random updates. In contrast, both DS-RAID and

DVS-RAID reduce this overhead as random writes
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are converted to sequential ones as many of the in-

dividual writes are processed simply in the order

they arrive. Similar results are also observed for

the Postmark and Financial workloads where DVS-

RAID performance improves by roughly 16% and

24%, respectively, compared to RAID-5. Note that

DS-RAID supports reliability comparable to RAID-

5 while RAID-0 does not, and that DVS-RAID fur-

ther enhances reliability by writing parities for small

writes.

Comparisons of cleaning times and erase counts

are depicted in Fig. 4(b) and 4(c). The overall

observations are similar to those of Fig. 4(a): 1)

RAID-0 performs best as it does not carry out par-

ity management, 2) RAID-5 performs worst, espe-

cially for the random workload, as small writes in-

cur more parity writes, and this in turn, results in

more frequent cleaning, and 3) DS-RAID reduces

cleaning overhead considerably, while DVS-RAID

sacrifices some cleaning time for reliability. Erase

counts show similar trends to cleaning times except

that the sequential and Postmark workloads, whose

request size is generally large, have much smaller

erase counts than the other two, whose write re-

quests are small and random.

Fig. 5 distinguishes the various components in-

volved in managing the parity. In particular, for

RAID-5, the parity overhead consists of page reads

needed for parity calculations (denoted PR) and the

parity writes for write requests (denoted PW WR).

In contrast, for DS-RAID and DVS-RAID, there is

no need to read pages during parity management.

However, parity writes are invoked during the clean-

ing process, which we denote as PW CL. DVS-

RAID has an additional component in that multi-

ple parities may be written and we denote this com-

ponent as PPW (Partial Parity Writes). However,

in the figure comparing DS-RAID and DVS-RAID,

we can see that extra writes incurred by variable size

striping is negligible except for the Financial trace

that has many small random writes.

5 Conclusion
In this work, we proposed a novel flash-aware RAID

scheme, called DVS-RAID, that dynamically forms

a variable size stripe based on the arrival order of

write requests by exploiting the out-of-place-update

characteristic of flash memory, the basic component

of SSDs. Experimental results showed that DVS-

RAID can effectively overcome the small write

problem, greatly improving the parity management

overhead of RAID-5. There are still many other

issues that need to be looked into more closely,

namely, efficient failure-recovery algorithms, effec-

tiveness of the algorithm with real SSD error behav-

ior, and RAID-conscious wear leveling and victim

block selection policies. We are currently looking

into these issues.
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